If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+9t+1=0
a = 1; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·1·1
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{77}}{2*1}=\frac{-9-\sqrt{77}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{77}}{2*1}=\frac{-9+\sqrt{77}}{2} $
| 6/7*1/2=x | | -17+3x=1+x | | 5/12=18/x | | -8=-0.2k | | 96=-8(n-6)+8 | | -15=2v+1-8 | | 6x1=2 | | 43x=2 | | 2x-17=109 | | 2/3r=4/18 | | -4=8b-6b | | 3x+100=x+500 | | 5(v+2)=7v-10 | | -7x+3x=-24 | | x+x+1/2x+1/8x+3=300 | | 6x+35=2 | | p+6+7=15 | | -2(3x+4)=-32 | | 2x-8=(-x)+1 | | -15+15x=180 | | 3m^2-11m+9=0 | | 8a-30=7a+15 | | 18+9x=90 | | 3 x − 8 = 20 − x | | -13=3a+7+2a | | 5x-180=3x+24 | | 4^x-35=64^x-3 | | 19.3=x/3 | | 7x+1.5=4x+12.95 | | –7+4x=6x–5 | | 20b-90=40b+30 | | 10.5=42/y |